Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Invest Radiol ; 57(1): 71-76, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-20239065

ABSTRACT

PURPOSE: The aim of this study was to investigate the feasibility of measuring early changes in serum cytokine levels after intravenous diethylenetriaminepentaacetic acid (Ca-DTPA) chelation in patients manifesting either gadolinium deposition disease (GDD) or gadolinium storage condition (GSC) and the possible usefulness of this method in further research. METHODS: Four patients with recent-onset GDD (≤1 year) and 2 patients with long-standing GSC (4 and 9 years) underwent chelation with intravenous bolus administration of Ca-DTPA. Multiple blood draws were performed to measure serum cytokines: at T = 0 (before Ca-DTPA injection) and 1, 5, 10, 30, 60 minutes, and 24 hours after Ca-DTPA injection. Patients rated the severity of GDD symptom flare at 24 hours. The 24-hour urine Gd amounts were measured prechelation and for the 24 hours after chelation. Serum samples were analyzed blind to whether patients had GDD or GSC but with knowledge of the time points characterizing each sample. RESULTS: Urine samples for both GDD and GSC patients showed increases in Gd postchelation. All GDD patients experienced flare reactions postchelation; the 2 GSC patients did not. Two cytokines, EGF and sCD40L, peaked at 30 minutes postchelation in at least 4 of the 6 participants. Three cytokines, ENA78/CXCL5, EOTAXIN/CCL11, and LEPTIN, peaked at 24 hours in at least 4 of the 6 participants. Two participants were high outliers for a large number of cytokines across time points. No clear distinction between GDD and GSC was apparent from the cytokine patterns, although differences were present. CONCLUSIONS: This pilot study describes precise temporal resolution (in the range of minutes) after a cytokine-inciting event. Select cytokines exhibited peak values at different time points. At this preliminary stage of investigation, peak cytokine release seems to reflect the amount of Gd mobilized rather than the severity of the patient symptomatic reaction. Too few subjects were studied to support statistical analysis between GDD and GSC groups, although differences were observed through visual data analysis.


Subject(s)
Gadolinium , Organometallic Compounds , Contrast Media , Cytokines , Gadolinium DTPA , Humans , Magnetic Resonance Imaging , Pentetic Acid , Pilot Projects
2.
Rev Neurol ; 75(2): 45-48, 2022 07 16.
Article in Spanish | MEDLINE | ID: covidwho-20238926

ABSTRACT

INTRODUCTION: COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to grow all over the world since december of 2019. Although the main clinical manifestation is pulmonary disease, neurological manifestations are a prominent and increasingly recognized feature of the disease. The Acute Disseminated Encephalomyelitis (ADEM) is a rare autoimmune disorder, most commonly triggered by a viral infection. There are a few case reports of ADEM associated with COVID-19, almost all of them associated pulmonary disease. We report the case of a young patient with diagnosis of ADEM with SARS-CoV-2 infection without clinical respiratory symptoms. CASE REPORT: A 20-year-old woman with no relevant medical history was brought to the emergency department with a progressive confusional state lasted for 7 days. Family reported the development of smell and taste deficit since two weeks before the onset of neurological symptoms. There were no complaints of pulmonary symptoms. At admission, she was drowsy and disoriented. Left homonymous hemianopsia and an ipsilateral Babinski sign was identified. A brain magnetic resonance image was done showing multiple hyperintense bilateral, asymmetric patchy and poorly marginated lesions with gadolinium enhancement. She was SARS-CoV-2 PCR positive on nasopharyngeal swab. Intravenous high-dose glucocorticoids were administered with marked clinical improvement. CONCLUSION: ADEM is an extremely uncommon complication of SARS-CoV-2infection. Acute disseminated encephalomyelitis should be considered a potentially treatable cause of encephalopathy or multifocal neurological deficits in COVID-19 patients, even in the absence of respiratory symptoms.


TITLE: Encefalomielitis aguda diseminada asociada a infección por el SARS-CoV-2 sin afectación respiratoria.Introducción. COVID-19 (coronavirus disease-2019) es la enfermedad secundaria a la infección por el coronavirus de tipo 2 o SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2), que se ha constituido como pandemia desde diciembre de 2019. Si bien la afectación más frecuente y grave es la pulmonar, las complicaciones neurológicas secundarias a la COVID-19 son cada vez más reconocidas. La encefalomielitis aguda diseminada (EMAD) es una enfermedad autoinmune poco frecuente, clásicamente secundaria a una infección viral previa o concomitante. Existen informes de EMAD asociada a la COVID-19, casi todos con afectación respiratoria asociada. Presentamos el caso de una mujer joven diagnosticada con EMAD secundaria a la infección por el SARS-CoV-2 sin afectación respiratoria. Caso clínico. Mujer de 20 años que consultó por cuadro de desorientación y alteración conductual de una semana de evolución. Destaca en la historia la presencia de anosmia y sensación febril dos semanas antes del inicio de los síntomas neurológicos. En el examen físico destacó somnolencia, desorientación, hemianopsia homónima izquierda y síndrome piramidal ipsilateral. Se realizó una resonancia magnética encefálica que mostró múltiples lesiones inflamatorias desmielinizantes bihemisféricas de la sustancia blanca sugerentes de EMAD. La reacción en cadena de la polimerasa del SARS-CoV-2 en aspirado nasofaríngeo resultó positiva. Se descartaron otras causas de lesiones inflamatorias. Recibió esteroides con excelente respuesta. Conclusión. La EMAD es una complicación extremadamente rara en pacientes con COVID-19 que debe considerarse como una causa tratable de encefalopatía y/o déficits neurológicos multifocales en pacientes con infección activa o reciente por SARS-CoV-2 con o sin manifestaciones respiratorias.


Subject(s)
COVID-19 , Encephalomyelitis, Acute Disseminated , Adult , COVID-19/complications , Contrast Media , Encephalomyelitis, Acute Disseminated/diagnosis , Encephalomyelitis, Acute Disseminated/etiology , Female , Gadolinium , Humans , SARS-CoV-2 , Young Adult
3.
Herz ; 48(3): 195-205, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2324676

ABSTRACT

The causes of cardiac inflammation during the COVID-19 pandemic are manifold and complex, and may have changed with different virus variants and vaccinations. The underlying viral etiology is self-evident, but its role in the pathogenic process is diverse. The view of many pathologists that myocyte necrosis and cellular infiltrates are indispensable for myocarditis does not suffice and contradicts the clinical criteria of myocarditis, i.e., a combination of serological evidence of necrosis based on troponins or MRI features of necrosis, edema, and inflammation based on prolonged T1 and T2 times and late gadolinium enhancement. The definition of myocarditis is still debated by pathologists and clinicians. We have learned that myocarditis and pericarditis can be induced by the virus via different pathways of action such as direct viral damage to the myocardium through the ACE2 receptor. Indirect damage occurs via immunological effector organs such as the innate immune system by macrophages and cytokines, and then later the acquired immune system via T cells, overactive proinflammatory cytokines, and cardiac autoantibodies. Cardiovascular diseases lead to more severe courses of SARS-CoV­2 disease. Thus, heart failure patients have a double risk for complicated courses and lethal outcome. So do patients with diabetes, hypertension, and renal insufficiency. Independent of the definition, myocarditis patients benefitted from intensive hospital care, ventilation, if needed, and cortisone treatment. Postvaccination myocarditis and pericarditis affect primarily young male patients after the second RNA vaccine. Both are rare events but severe enough to deserve our full attention, because treatment according to current guidelines is available and necessary.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Male , SARS-CoV-2 , Autoimmunity , Pandemics , Contrast Media , Gadolinium/therapeutic use , Inflammation , Pericarditis/therapy , Arrhythmias, Cardiac , Cytokines , Vaccination
4.
Sci Immunol ; 8(83): eadh3455, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2312885

ABSTRACT

Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.


Subject(s)
Antineoplastic Agents , COVID-19 , Myocarditis , Humans , Myocarditis/etiology , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19 Vaccines/adverse effects , Contrast Media , COVID-19/prevention & control , Gadolinium , Killer Cells, Natural , Cytokines
5.
Eur Radiol ; 33(6): 3867-3877, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2312112

ABSTRACT

OBJECTIVE: COVID-19 infection is a systemic disease with various cardiovascular symptoms and complications. Cardiac MRI with late gadolinium enhancement is the modality of choice for the assessment of myocardial involvement. T1 and T2 mapping can increase diagnostic accuracy and improve further management. Our study aimed to evaluate the different aspects of myocardial damage in cases of COVID-19 infection using cardiac MRI. METHODS: This descriptive retrospective study included 86 cases, with a history of COVID-19 infection confirmed by positive RT-PCR, who met the inclusion criteria. Patients had progressive chest pain or dyspnoea with a suspected underlying cardiac cause, either by an abnormal electrocardiogram or elevated troponin levels. Cardiac MRI was performed with late contrast-enhanced (LGE) imaging, followed by T1 and T2 mapping. RESULTS: Twenty-four patients have elevated hsTnT with a median hsTnT value of 133 ng/L (IQR: 102 to 159 ng/L); normal value < 14 ng/L. Other sixty-two patients showed elevated hsTnI with a median hsTnI value of 1637 ng/L (IQR: 1340 to 2540 ng/L); normal value < 40 ng/L. CMR showed 52 patients with acute myocarditis, 23 with Takotsubo cardiomyopathy, and 11 with myocardial infarction. Invasive coronary angiography was performed only in selected patients. CONCLUSION: Different COVID-19-related cardiac injuries may cause similar clinical symptoms. Cardiac MRI is the modality of choice to differentiate between the different types of myocardial injury such as Takotsubo cardiomyopathy and infection-related cardiomyopathy or even acute coronary syndrome secondary to vasculitis or oxygen-demand mismatch. KEY POINTS: • It is essential to detect early COVID-related cardiac injury using different cardiac biomarkers and cardiac imaging, as it has a significant impact on patient management and outcome. • Cardiac MRI is the modality of choice to differentiate between the different aspects of COVID-related myocardial injury.


Subject(s)
COVID-19 , Myocarditis , Takotsubo Cardiomyopathy , Humans , Retrospective Studies , Contrast Media , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging/methods , Myocarditis/complications , Myocarditis/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/adverse effects
6.
PLoS One ; 18(3): e0282394, 2023.
Article in English | MEDLINE | ID: covidwho-2287689

ABSTRACT

BACKGROUND: Long-term symptoms are frequent after coronavirus disease 2019 (COVID-19). We studied the prevalence of post-acute myocardial scar on cardiac magnetic resonance imaging (CMR) in patients hospitalized due to COVID-19 and its association with long-term symptoms. MATERIALS AND METHODS: In this prospective observational single-center study, 95 formerly hospitalized COVID-19 patients underwent CMR imaging at the median of 9 months after acute COVID-19. In addition, 43 control subjects were imaged. Myocardial scar characteristic of myocardial infarction or myocarditis were noted from late gadolinium enhancement images (LGE). Patient symptoms were screened using a questionnaire. Data are presented as mean ± standard deviation or median (interquartile range). RESULTS: The presence of any LGE was higher in COVID-19 patients (66% vs. 37%, p<0.01) as was the presence of LGE suggestive of previous myocarditis (29% vs. 9%, p = 0.01). The prevalence of ischemic scar was comparable (8% vs. 2%, p = 0.13). Only two COVID-19 patients (7%) had myocarditis scar combined with left ventricular dysfunction (EF <50%). Myocardial edema was not detected in any participant. The need for intensive care unit (ICU) treatment during initial hospitalization was comparable in patients with and without myocarditis scar (47% vs. 67%, p = 0.44). Dyspnea, chest pain, and arrhythmias were prevalent in COVID-19 patients at follow-up (64%, 31%, and 41%, respectively) but not associated with myocarditis scar on CMR. CONCLUSIONS: Myocardial scar suggestive of possible previous myocarditis was detected in almost one-third of hospital-treated COVID-19 patients. It was not associated with the need for ICU treatment, greater symptomatic burden, or ventricular dysfunction at 9 months follow-up. Thus, post-acute myocarditis scar on COVID-19 patients seems to be a subclinical imaging finding and does not commonly require further clinical evaluation.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Humans , Myocarditis/complications , Contrast Media , Cicatrix/complications , Ventricular Function, Left , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Heart Injuries/complications , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests
7.
Kardiol Pol ; 81(5): 463-471, 2023.
Article in English | MEDLINE | ID: covidwho-2261775

ABSTRACT

BACKGROUND: COVID-19 is a great medical challenge as it provokes acute respiratory distress and has pulmonary manifestations and cardiovascular (CV) consequences. AIMS: This study compared cardiac injury in COVID-19 myocarditis patients with non-COVID-19 myocarditis patients. METHODS: Patients who recovered from COVID-19 were scheduled for cardiovascular magnetic resonance (CMR) owing to clinical myocarditis suspicion. The retrospective non-COVID-19 myocarditis (2018-2019) group was enrolled (n = 221 patients). All patients underwent contrast-enhanced CMR, the conventional myocarditis protocol, and late gadolinium enhancement (LGE). The COVID study group included 552 patients at a mean (standard deviation [SD]) age of 45.9 (12.6) years. RESULTS: CMR assessment confirmed myocarditis-like LGE in 46% of the cases (68.5% of the segments with LGE <25% transmural extent), left ventricular (LV) dilatation in 10%, and systolic dysfunction in 16% of cases. The COVID-19 myocarditis group showed a smaller median (interquartile range [IQR]) LV LGE (4.4% [2.9%-8.1%] vs. 5.9% [4.4%-11.8%]; P <0.001), lower LV end-diastolic volume (144.6 [125.5-178] ml vs. 162.8 [136.6-194] ml; P <0.001), limited functional consequence (left ventricular ejection fraction, 59% [54.1%-65%] vs. 58% [52%-63%]; P = 0.01), and a higher rate of pericarditis (13.6% vs. 6%; P = 0.03) compared to non-COVID-19 myocarditis. The COVID-19-induced injury was more frequent in septal segments (2, 3, 14), and non-COVID-19 myocarditis showed higher affinity to lateral wall segments (P <0.01). Neither obesity nor age was associated with LV injury or remodeling in subjects with COVID-19 myocarditis. CONCLUSIONS: COVID-19-induced myocarditis is associated with minor LV injury with a significantly more frequent septal pattern and a higher pericarditis rate than non-COVID-19 myocarditis.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Middle Aged , Myocarditis/etiology , Myocarditis/complications , Contrast Media , Stroke Volume , Gadolinium , Ventricular Function, Left , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , COVID-19/complications , Myocardium/pathology , Magnetic Resonance Spectroscopy , Predictive Value of Tests
8.
Environ Int ; 173: 107868, 2023 03.
Article in English | MEDLINE | ID: covidwho-2276167

ABSTRACT

Marine ecosystems are exposed to a multitude of stresses, including emerging metals as Rare Earth Elements. The management of these emerging contaminants represents a significant environmental issue. For the past three decades, the increasing medical use of gadolinium-based contrast agents (GBCAs) has contributed to their widespread dispersion in hydrosystems, raising concerns for ocean conservation. In order to control GBCA contamination pathways, a better understanding of the cycle of these elements is needed, based on the reliable characterization of fluxes from watersheds. Our study proposes an unprecedented annual flux model for anthropogenic gadolinium (Gdanth) based on GBCA consumption, demographics and medical uses. This model enabled the mapping of Gdanth fluxes for 48 European countries. The results show that 43 % of Gdanth is exported to the Atlantic Ocean, 24 % to the Black Sea, 23 % to the Mediterranean Sea and 9 % to the Baltic Sea. Together, Germany, France and Italy contribute 40 % of Europe's annual flux. Our study was therefore able to identify the current and future major contributors to Gdanth flux in Europe and identify abrupt changes related to the COVID-19 pandemic.


Subject(s)
COVID-19 , Gadolinium , Humans , Gadolinium/analysis , Ecosystem , Pandemics , Mediterranean Sea , Contrast Media
9.
Pediatr Cardiol ; 44(5): 1108-1117, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2285032

ABSTRACT

There have been reports of myocarditis following vaccination against COVID-19. We sought to describe cardiac magnetic resonance (CMR) findings among pediatric patients. Retrospective review at a large academic center of patients clinically diagnosed with post-vaccine myocarditis (PVM) undergoing CMR. Data collected included parametric mapping, ventricular function, and degree of late gadolinium enhancement (LGE). Post-processing strain analysis was performed using feature tracking. Strain values, T1/T2 values, and ventricular function were compared to age- and gender-matched controls with viral myocarditis using a Wilcoxon Signed Rank test. Among 12 patients with presumed PVM, 11 were male and 11 presented after the second vaccination dose, typically within 4 days. All presented with chest pain and elevated troponin. 10 met MRI criteria for acute myocarditis. All had LGE typically seen in the lateral and inferior walls; only five had prolonged T1 values. 10 met criteria for edema based on skeletal muscle to myocardium signal intensity ratio and only 5 had prolonged T2 mapping values. Patients with PVM had greater short-axis global circumferential and radial strain, right ventricle function, and cardiac output when compared to those with viral myocarditis. Patients with PVM have greater short-axis global circumferential and radial strains compared to those with viral myocarditis. LGE was universal in our cohort. Signal intensity ratios between skeletal muscle and myocardium may be more sensitive in identifying edema than T2 mapping. Overall, the impact on myocardial strain by CMR is less significant in PVM compared to more classic viral myocarditis.


Subject(s)
COVID-19 , Myocarditis , Humans , Male , Child , Female , Myocarditis/diagnostic imaging , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Contrast Media , Predictive Value of Tests , Gadolinium , Magnetic Resonance Imaging , Myocardium/pathology , Magnetic Resonance Spectroscopy , Retrospective Studies , Vaccination , Magnetic Resonance Imaging, Cine , Ventricular Function, Left
10.
J Am Heart Assoc ; 12(6): e027801, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2264637

ABSTRACT

Background Meta-analysis can identify biological factors that moderate cardiac magnetic resonance myocardial tissue markers such as native T1 (longitudinal magnetization relaxation time constant) and T2 (transverse magnetization relaxation time constant) in cohorts recovering from COVID-19 infection. Methods and Results Cardiac magnetic resonance studies of patients with COVID-19 using myocardial T1, T2 mapping, extracellular volume, and late gadolinium enhancement were identified by database searches. Pooled effect sizes and interstudy heterogeneity (I2) were estimated with random effects models. Moderators of interstudy heterogeneity were analyzed by meta-regression of the percent difference of native T1 and T2 between COVID-19 and control groups (%ΔT1 [percent difference of the study-level means of myocardial T1 in patients with COVID-19 and controls] and %ΔT2 [percent difference of the study-level means of myocardial T2 in patients with COVID-19 and controls]), extracellular volume, and the proportion of late gadolinium enhancement. Interstudy heterogeneities of %ΔT1 (I2=76%) and %ΔT2 (I2=88%) were significantly lower than for native T1 and T2, respectively, independent of field strength, with pooled effect sizes of %ΔT1=1.24% (95% CI, 0.54%-1.9%) and %ΔT2=3.77% (95% CI, 1.79%-5.79%). %ΔT1 was lower for studies in children (median age: 12.7 years) and athletes (median age: 21 years), compared with older adults (median age: 48 years). Duration of recovery from COVID-19, cardiac troponins, C-reactive protein, and age were significant moderators for %ΔT1 and/or %ΔT2. Extracellular volume, adjusted by age, was moderated by recovery duration. Age, diabetes, and hypertension were significant moderators of the proportion of late gadolinium enhancement in adults. Conclusions T1 and T2 are dynamic markers of cardiac involvement in COVID-19 that reflect the regression of cardiomyocyte injury and myocardial inflammation during recovery. Late gadolinium enhancement and to a lesser extent extracellular volume, are more static biomarkers moderated by preexisting risk factors linked to adverse myocardial tissue remodeling.


Subject(s)
COVID-19 , Contrast Media , Child , Humans , Aged , Young Adult , Adult , Middle Aged , Gadolinium , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests
12.
Infect Dis (Lond) ; 55(3): 199-206, 2023 03.
Article in English | MEDLINE | ID: covidwho-2187931

ABSTRACT

BACKGROUND: There is limited data on the pattern and severity of myocardial injury in patients with COVID-19 vaccination associated myocarditis. OBJECTIVE: We aimed to define the myocardial damage occurring after BNT162b2 vaccination, raise awareness about adverse reactions developing after vaccination, and determine the patterns and scope of Cardiac magnetic resonance imaging (MRI) findings. PATIENTS/METHODS: A total of 9 patients diagnosed with vaccine-associated myopericarditis were followed up. RESULTS: The mean age of the patient at diagnosis was 15.3 ± 1.0 (range: 14-17) years, and all patients were male. Seven patients presented with myocarditis symptoms after their second vaccine dose, one patient presented with pericarditis symptoms after his first dose, and the other patient presented with myocarditis symptoms after his booster dose. The median time at presenting to the hospital was 3 (range: 2-22) days. Seven (77.7%) patients had abnormal electrocardiography (ECG) findings, and the most prevalent finding was diffuse ST-segment elevation. Initial cardiac MRI results were abnormal in all patients, where 8 (88.8%) patients had late gadolinium enhancement, and 5 (55.5%) had myocardial edoema. Three patients showed local left ventricular wall-motion abnormalities. In their follow-up MRIs 3-6 months later, myocardial edoema was present in 2 (28.5%) patients, while late gadolinium enhancement was present in all patients (7/7, 100%, 2 patients did not have control MRI time). Hypokinetic segments were still present in one of the 3 patients. No negative cardiac events were observed in the short-term follow-up of any patient. CONCLUSION: Further follow-up evaluation and larger multicenter studies are needed to determine the clinical significance of persistent cardiac MRI abnormalities.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Adolescent , Female , Humans , Male , BNT162 Vaccine , Contrast Media , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Follow-Up Studies , Gadolinium , Magnetic Resonance Imaging , Myocarditis/diagnostic imaging , Myocarditis/etiology , Vaccines
13.
Pediatr Radiol ; 53(5): 892-899, 2023 05.
Article in English | MEDLINE | ID: covidwho-2174046

ABSTRACT

BACKGROUND: Rare cases of cardiac inflammation following vaccination for severe acute respiratory coronavirus 2 (SARS-CoV-2) have been reported. OBJECTIVE: To study paediatric patients with clinical findings of acute inflammation post coronavirus disease 2019 (COVID-19) Pfizer/BioNTech vaccination using cardiovascular magnetic resonance imaging (MRI) in acute and subacute phases. MATERIALS AND METHODS: We enrolled adolescents younger than 18 years who presented at one of two institutions between July 2021 and August 2022 with clinical and laboratory findings of acute myocarditis shortly following COVID-19 Pfizer/BioNTech vaccination. They all underwent cardiovascular MRI using the institutional myocarditis protocol. RESULTS: Five adolescents (four boys) underwent eight scans between 3 days and 109 days (mean 49 days) after the onset of symptoms following COVID-19 vaccination. Myocardial oedema appeared on short tau inversion recovery (STIR) T2-weighted images in three adolescents at presentation (3-12 days after symptom onset). In these children, the myocardial oedema/acute inflammation had resolved at follow-up cardiovascular MRI (53-68 days after first MRI). However, in all three adolescents, a persistent area of late gadolinium enhancement was evident at follow-up, suggesting post-myocarditic fibrosis. One adolescent scanned only once, 66 days after being symptomatic, had no acute inflammation but persistent fibrotic changes. This last adolescent, who underwent the first scan 109 days after symptom onset, had findings compatible with an episode of previous myocarditis, with mild ongoing regional myocardial oedema/inflammation. CONCLUSION: This study on post-vaccine myocarditis demonstrates residual lesions with persistent areas of late gadolinium enhancement/myocardial fibrosis with ongoing myocardial oedema after resolution of the initial myocardial oedema a few weeks after Pfizer/BioNTech vaccination. There is an urgent need to recognise and fully investigate the outcome of post-vaccination myocarditis.


Subject(s)
COVID-19 , Myocarditis , Male , Humans , Adolescent , Child , Myocarditis/diagnostic imaging , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Gadolinium/adverse effects , Contrast Media/adverse effects , SARS-CoV-2 , Magnetic Resonance Imaging/methods , Edema , Inflammation
14.
Curr Opin Pulm Med ; 28(6): 499-510, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2161250

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review article is to summarize the current in-vivo imaging techniques for the evaluation of the glymphatic function and discuss the factors influencing the glymphatic function and research directions in the future. RECENT FINDINGS: The glymphatic system allows the clearance of metabolic waste from the central nervous system (CNS). The glymphatic pathway has been investigated using intrathecal or intravenous injection of a gadolinium-based contrast agent (GBCA) on MRI, so-called glymphatic MRI. The glymphatic MRI indirectly visualizes the dynamic CSF flow and evaluated the glymphatic function in the animal and human models. Several clinical and preclinical studies using glymphatic MRI have confirmed that the glymphatic function is impaired in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and idiopathic normal pressure hydrocephalus. Furthermore, physiologic process such as sleep facilitates the glymphatic clearance, thus clearing accumulation of protein deposition, such as amyloid or tau, potentially delaying the progression of neurodegenerative diseases. SUMMARY: The glymphatic system plays a crucial role in clearing metabolic wastes in the brain. Glymphatic MR imaging using GBCA administration serves as a functional imaging tool to measure the glymphatic function and investigate various pathophysiologies of neurodegenerative diseases.


Subject(s)
Contrast Media , Neurodegenerative Diseases , Animals , Brain/diagnostic imaging , Contrast Media/metabolism , Gadolinium/metabolism , Humans , Magnetic Resonance Imaging/methods , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Sleep
15.
Eur J Pediatr ; 182(2): 845-854, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2157267

ABSTRACT

In this multicenter retrospective study we aimed to evaluate the outcome of cardiac involvement in children affected by multisystem inflammatory syndrome (MIS-C), assessed through cardiac magnetic resonance (CMR). Children referring to three Italian tertiary pediatric centers between February 2020 and November 2021 with a diagnosis of MIS-C, who underwent CMR during a follow-up visit, were enrolled. Demographic, clinical, laboratory, treatment, and outcome data were collected. Twenty MIS-C patients (aged 9-17, median 12 years) were included in the study. Heart involvement at onset was testified by hypotension/shock (55%), laboratory evidence of myocardial involvement (100%), reduced LV ejection fraction (EF) on echocardiography (83%), and/or need for inotrope agents (40%); they all presented good clinical, laboratory, and echocardiographic response to treatment. CMR was performed after a median interval of 3 months from discharge. Pericardial effusion and myocardial edema were found in 5% of patients. Mild residual left ventricular (LV) dysfunction was found in 20% of patients, all showing normal echocardiographic LVEF at discharge. Minimal myocardial scars were found in 25% by late gadolinium enhancement (LGE). One patient was evaluated at two consecutive time points, showing partial resolution of a myocardial scar after 7 months from its first finding. CONCLUSION: Despite the severity of heart involvement in the acute MIS-C phase, the mid-term cardiac outcome is good. Direct cardiac tissue viral invasion may be involved in MIS-C pathogenesis. WHAT IS KNOWN: • Heart involvement is common in MIS-C, but conflicting findings have been shown regarding cardiac outcome when assessed through cardiac MRI. WHAT IS NEW: • Midterm cardiac MRI shows mild abnormalities in patients recovered from MIS-C with any grade of severity of cardiac involvement at presentation.


Subject(s)
Contrast Media , Ventricular Dysfunction, Left , Child , Humans , Retrospective Studies , Follow-Up Studies , Magnetic Resonance Imaging, Cine , Gadolinium , Ventricular Function, Left/physiology , Stroke Volume , Magnetic Resonance Imaging , Ventricular Dysfunction, Left/diagnostic imaging
17.
Lancet Child Adolesc Health ; 6(11): 788-798, 2022 11.
Article in English | MEDLINE | ID: covidwho-2096191

ABSTRACT

BACKGROUND: Data on medium-term outcomes in indivduals with myocarditis after mRNA COVID-19 vaccination are scarce. We aimed to assess clinical outcomes and quality of life at least 90 days since onset of myocarditis after mRNA COVID-19 vaccination in adolescents and young adults. METHODS: In this follow-up surveillance study, we conducted surveys in US individuals aged 12-29 years with myocarditis after mRNA COVID-19 vaccination, for whom a report had been filed to the Vaccine Adverse Event Reporting System between Jan 12 and Nov 5, 2021. A two-component survey was administered, one component to patients (or parents or guardians) and one component to health-care providers, to assess patient outcomes at least 90 days since myocarditis onset. Data collected were recovery status, cardiac testing, and functional status, and EuroQol health-related quality-of-life measures (dichotomised as no problems or any problems), and a weighted quality-of-life measure, ranging from 0 to 1 (full health). The EuroQol results were compared with published results in US populations (aged 18-24 years) from before and early on in the COVID-19 pandemic. FINDINGS: Between Aug 24, 2021, and Jan 12, 2022, we collected data for 519 (62%) of 836 eligible patients who were at least 90 days post-myocarditis onset: 126 patients via patient survey only, 162 patients via health-care provider survey only, and 231 patients via both surveys. Median patient age was 17 years (IQR 15-22); 457 (88%) patients were male and 61 (12%) were female. 320 (81%) of 393 patients with a health-care provider assessment were considered recovered from myocarditis by their health-care provider, although at the last health-care provider follow-up, 104 (26%) of 393 patients were prescribed daily medication related to myocarditis. Of 249 individuals who completed the quality-of-life portion of the patient survey, four (2%) reported problems with self-care, 13 (5%) with mobility, 49 (20%) with performing usual activities, 74 (30%) with pain, and 114 (46%) with depression. Mean weighted quality-of-life measure (0·91 [SD 0·13]) was similar to a pre-pandemic US population value (0·92 [0·13]) and significantly higher than an early pandemic US population value (0·75 [0·28]; p<0·0001). Most patients had improvements in cardiac diagnostic marker and testing data at follow-up, including normal or back-to-baseline troponin concentrations (181 [91%] of 200 patients with available data), echocardiograms (262 [94%] of 279 patients), electrocardiograms (240 [77%] of 311 patients), exercise stress testing (94 [90%] of 104 patients), and ambulatory rhythm monitoring (86 [90%] of 96 patients). An abnormality was noted among 81 (54%) of 151 patients with follow-up cardiac MRI; however, evidence of myocarditis suggested by the presence of both late gadolinium enhancement and oedema on cardiac MRI was uncommon (20 [13%] of 151 patients). At follow-up, most patients were cleared for all physical activity (268 [68%] of 393 patients). INTERPRETATION: After at least 90 days since onset of myocarditis after mRNA COVID-19 vaccination, most individuals in our cohort were considered recovered by health-care providers, and quality of life measures were comparable to those in pre-pandemic and early pandemic populations of a similar age. These findings might not be generalisable given the small sample size and further follow-up is needed for the subset of patients with atypical test results or not considered recovered. FUNDING: US Centers for Disease Control and Prevention.


Subject(s)
COVID-19 , Myocarditis , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Contrast Media , Female , Follow-Up Studies , Gadolinium , Humans , Male , Myocarditis/diagnosis , Myocarditis/epidemiology , Myocarditis/etiology , Pandemics , Quality of Life , RNA, Messenger , Troponin , United States/epidemiology , Vaccination , Young Adult
18.
Echocardiography ; 39(11): 1401-1411, 2022 11.
Article in English | MEDLINE | ID: covidwho-2078440

ABSTRACT

OBJECTIVE: Cardiac involvement in recovered COVID-19 patients assessed by cardiac magnetic resonance imaging (MRI). METHODS: Subjects recently recovered from COVID-19 and with an abnormal left ventricular global longitudinal strain were enrolled. Cardiac MRI in all the enrolled subjects was done at baseline (within 30-90 days following recovery from COVID-19) with a follow-up scan at 6 months in individuals with an abnormal baseline scan. Additionally, 20 age-and sex-matched individuals were enrolled as healthy controls (HCs). RESULTS: All the 30 enrolled subjects were symptomatic during active COVID-19 disease and were categorized as mild: 11 (36.7%), moderate: 6 (20%), and severe: 13 (43.3%). Of the 30 patients, 16 (53.3%) had abnormal CMR findings. Myocardial edema was reported in 12 (40%) patients while 10 (33.3%) had late gadolinium enhancement (LGE). No difference was observed in terms of conventional left ventricular (LV) parameters; however, COVID-19-recovered patients had significantly lower right ventricular (RV) ejection fraction, RV stroke volume, and RV cardiac index compared to HCs. Follow-up scan was abnormal in 4/16 (25%) with LGE persisting in three patients (who had severe COVID-19 [3/4;75%]). Subjects with severe COVID-19 had a greater frequency of LGE (53.8%) and myocardial edema (61.5%) as compared to mild and moderate cases. Myocardial T1 (1284 ± 43.8 ms vs. 1147.6 ± 68.4 ms; p < .0001) and T2 values (50.8 ± 16.7 ms vs. 42.6 ± 3.6 ms; p = .04) were significantly higher in post COVID-19 subjects compared to HCs. Similarly, T1 and T2 values of severe COVID-19 patients were significantly higher compared to mild and moderate cases. CONCLUSIONS: An abnormal CMR was seen in half of the recovered patients with persistent abnormality in one-fourth at 6 months. Our study suggests a need for closer follow-up among recovered subjects in order to evaluate for long-term cardiovascular sequelae. COVID-19 causes structural changes in the myocardium in a small segment of patients with partial spontaneous resolution.


Subject(s)
COVID-19 , Magnetic Resonance Imaging, Cine , Humans , Follow-Up Studies , Magnetic Resonance Imaging, Cine/methods , COVID-19/complications , Contrast Media , Gadolinium , Stroke Volume , Myocardium/pathology , Magnetic Resonance Imaging , Ventricular Function, Left , Predictive Value of Tests
19.
Mymensingh Med J ; 31(4): 1108-1114, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2045555

ABSTRACT

It was previously reported that coronavirus caused myocardial injury in hospitalized patients. However, delayed cardiac involvement in symptomatic patient recovery from COVID-19 is not yet well known. The objective of this study was to evaluate cardiac involvement by using cardiac magnetic resonance (CMR) in symptomatic post-COVID-19 recovered patients. Thirty (30) patients who recovered from COVID-19 and had recently reported cardiac symptoms were studied in a prospective observational study performed at Popular Medical College Hospital, Dhaka, Bangladesh from March 2021 to September 2021. They underwent CMR examinations. CMR scanning protocol included the following: black blood, cine sequence, both short-axis and long-axis, T2-weight short tau inversion recovery (STIR) sequence, T2- weighted imaging (T2WI) and late gadolinium enhancement (LGE) and quantitative mapping sequences-native T1/T2 mapping and post-contrast T1 mapping. Myocardial edema and late gadolinium enhancement were assessed in all patients. Quantitative evaluation of native T1/T2 and ECV value and cardiac function were evaluated. There were 30 people in all in this study. The average age of the participants in the study was 36.6 years. Fourteen (46.6%) of the patients had abnormal cardiac MRI results, while the remaining 15(53.3%) had negative CMR findings. Among positive findings patients, 8(57.1%) of 14 had increased T2 signal. Increased myocardial edema was found in the same no of patients, involving 53.2% (128 of 224) of LV segments. Only 2 cases (2 of 14) showed mid myocardial and subepicardial LGE, involving 18 of 224, 8.03% of myocardial segments. Global native T1, T2 and ECV values are significantly elevated in all CMR positive findings patients. Native T1 1231ms (IQR: 1281.25-1257.5 versus 1155.5 (IQR: 1137.25-1172.75), T2 40 (IQR: 34.5-43.25) versus 35.5 (IQR: 34-37), ECV 31 (29.75-33.25) versus 23.5 (21.25-24.0), p<0.001; p<0.011 and p<0.001 respectively. Reduced RV functional were found in positive as compared with negative CMR findings patients, EF, 32.05 (IQR: 25.25-39.0) versus 54.5 (IQR: 52.0-57.75) and EDV, 117.5 (IQR: 102.0-134.25) versus 95.0 (IQR: 71.75-99.75), p<0.001 and p<0.001 respectively. In this study cardiac involvement was found in the post-COVID-19 recovered patient with cardiac symptoms. Cardiac MRI findings included myocardial edema, fibrosis and reduced right ventricular function. So attention should be paid to symptomatic post-COVID-19 recovered patients.


Subject(s)
COVID-19 , Cardiomyopathies , Adult , Bangladesh/epidemiology , COVID-19/complications , Cardiomyopathies/pathology , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/adverse effects , Predictive Value of Tests , Tertiary Care Centers
20.
Can J Cardiol ; 38(11): 1676-1683, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2035864

ABSTRACT

BACKGROUND: Acute myocarditis is a rare complication of mRNA-based COVID-19 vaccination. Little is known about the natural history of this complication. METHODS: Baseline and convalescent (≥ 90 days) cardiac magnetic resonance (CMR) imaging assessments were performed in 20 consecutive patients meeting Updated Lake Louise Criteria for acute myocarditis within 10 days of mRNA-based vaccination. CMR-based changes in left ventricular volumes, mass, ejection fraction (LVEF), markers of tissue inflammation (native T1 and T2 mapping), and fibrosis (late gadolinium enhancement [LGE] and extracellular volume [ECV]) were assessed between baseline and convalescence. Cardiac symptoms and clinical outcomes were captured. RESULTS: Median age was 23.1 years (range 18-39 years), and 17 (85%) were male. Convalescent evaluations were performed at a median (IQR) 3.7 (3.3-6.2) months. The LVEF showed a mean 3% absolute improvement, accompanied by a 7% reduction in LV end-diastolic volume and 5% reduction in LV mass (all P < 0.015). Global LGE burden was reduced by 66% (P < 0.001). Absolute reductions in global T2, native T1, and ECV of 2.1 ms, 58 ms, and 2.9%, repectively, were documented (all P ≤ 0.001). Of 5 patients demonstrating LVEF ≤ 50% at baseline, all recovered to above this threshold in convalescence. A total of 18 (90%) patients showed persistence of abnormal LGE although mean fibrosis burden was < 5% of LV mass in 85% of cases. No patient experienced major clinical outcomes. CONCLUSIONS: COVID-19 mRNA vaccine-associated myocarditis showed rapid improvements in CMR-based markers of edema, contractile function, and global LGE burden beyond 3 months of recovery in this young patient cohort. However, regional fibrosis following edema resolution was commonly observed, justifying need for ongoing surveillance.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Humans , Male , Adolescent , Young Adult , Adult , Female , Myocarditis/diagnosis , Myocarditis/etiology , Myocarditis/pathology , COVID-19 Vaccines/adverse effects , Contrast Media , Gadolinium , COVID-19/epidemiology , COVID-19/prevention & control , Convalescence , Ventricular Function, Left , Stroke Volume , Predictive Value of Tests , Fibrosis , RNA, Messenger , Magnetic Resonance Imaging, Cine , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL